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Let S be a class of functions in Lp[O, <50 ], where 1~ P ~ CX) and <50 > O.
Suppose that for each <5 E (0, <50 ], a functionf E Lp[O, <50 ] has a best approx­
imation P~(f) from S. The cluster points of the net {p~(f)} as <5 ~ 0 + are
called the best local approximants of f (at 0) and the set of these will be
denoted by Po(f). This idea is of particular interest in spline and piecewise
polynomial approximation, where the behavior of approximants on small
intervals is important.

The notion of best local approximation was introduced in [1] for the
uniform norm and was continued in [2] for the L 2 case. Several questions
were left unanswered and we shall attempt to answer some of these in this
paper. In particular, by considering the problem from the more general point
of view of interpolation we shall extend most of the results of [1,2] to the
case of general p and in addition we shall show that the set Po(f) is
connected, at least if it is bounded. (This answers a question posed in [2].)

THE ApPROXIMATING FAMILY

Let 1~ P ~ CX) be fixed and let {Uo,'''' Un} C Cn[O, <5oJ for some <5 0 > 0 be
such that the Wronskian matrix

Un(X) j
U~(x)

cF
n
n:) (x)

satisfies det Wn(UO"'" Un; 0) == det W n =F O. Let H n be the space spanned by
{Uo,... , Un}' Then H n is an n + I dimensional subspace of Lp[O, 150 ] and as
noted in [2] the condition det W n =F 0 implies that H n is a Haar subspace on
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some subinterval [0,151 c [0,150 1. Thus there is no harm in assuming at the
outset that H n is Haar on [0,150 1.

Let {til'} i = 0,..., n be sequences satisfying

lim til' = 0,
v~oo

i = 0,1,... , n,

(1)

(2)

and given f E qo, 150) let Pv(f) be the unique element of Ifn that inter
polates f at each til" i = 0,..., n. That is

i=O,I,... ,n, V= 1,2,.... (3)

THEOREM 1. Let f E Ck[O, 1501and 0 ~ k ~ n. Then every cluster point q
of the sequence defined by (3) satisfies the condition that

j= 0,... , k. (4)

In particular, if k = n the sequence {pv(f)} converges (uniformly) to the
unique Po E H n that satisfies (4) k = n.

The proof of Theorem 1 requires the following two lemmas.

LEMMA 1. For each v, Pv(f)(t) = L:7=0 ail' Ui(t), where

Uo(toJ Ui-l(tov) f(toJ Ui+I (tov) Un(toJ

UO(t lv ) Ui_l(tIJ f(tlJ Ui+l(tIJ Un(t I,')

Uo(tnJ Ui-l(tnJ f(tnJ Ui+l(tnJ Un(tnJ
a iv =

Uo(tov) Ui-I(tov ) Ui(tov ) Ui+ l(tov) Un(tov)

UO(tIJ Ui_l(tIJ Ui(tlJ Ui+l(tlJ Un(tIJ

Uo(tnJ Ui-l(tnJ Ui(tnJ Ui+l(tnJ Un(tnJ

i=O,..., n.

Proof Cramer's rule.

LEMMA 2. For each i = 0,... , n the cofificients ail' of P,,(f) can be
rewritten in the form
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UO[tOv ] Ui_l[tOv ] f[tov ] Un[tov ]

UO[tOv , t lv ] Ui-l[tOv ' tlv] f[tov ' t lv ] Un[tov ' tlv]

Uo[tov, .. ·,tnv] Ui_l[tov, ..·,tnv] f[tov,· .. ,tnvl Un [tov"'" tnv]
a iv =

Uo[tov ] Un[tov ]

Uo[tov ' t lv ] Un[tov ' t lv ]

I

I Uo[tov "'" tnv ] Un[tov "'" tnv ]

where g[so,'''' Sj] denotes the (j + l)st order divided difference of g with
respect to so,..., Sj'

Proof This follows immediately from the properties of determinants and
the fact that for each j,

[] g(sj+ I) f [ ]
gsa,..·, Sj = ( _) ( _) + ...... aig SO"'" Si ,

Sj+ I So'" sj+ I Sj 1=0

where the coefficients a i depend only on SO"'" Si' (Here we assume that the
s;'s are distinct, of course.)

Proof of Theorem 1. If q is a cluster point of the sequence {Pv(f)} then
q = L:?=o aiUi(t) and there is a subsequence (which we do not relabel) such
that

lim aiv = ail
v~oo

i= 0,... , n.

But using Lemma 2 we see that a i must have the form

Ui_I(O) f(O) Ui+1(0)
Ui_I(O) 1'(0) Ui+ ((0)

fk)(O)

kl

CHI

[f;~\(0) [f;':!1(0)
n! Cn n!

UO(O) Un (0)

rton)(O) U'nnl(O)

n! n!

i = 0,..., n, (5)
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where C k + 1 , ••• , Cn are independent of i. But considering the interpolation
problem of finding ij E H n such that

ij(j)(O) = fU)(O),

g(j)(O) = j! Cj '

j=O,...,k,

j = k + 1,... , n,

we see that it always has a unique solution and, in fact, solving by Cramer's
rule yields the coefficients defined in (5). The convergence of the sequence
{Pv(f)} when k = n is now clear. I

COROLLARY 1. Letf E Cn[O, 60 1and let 1 ~ P ~ r::IJ be fixed. For each 6
satisfying °<6 ~ 60 let P 8(f) denote the (unique) best L p approximation to f
on [0,£5] by elements of H n. Then P 8(f)---tPo(f) uniformly on [0,60 1 as
6 ---t 0, where Po(f) is the unique element of H n satisfying

j=O,... ,n.

Proof Since H n is Haar of dimension n + 1 it is well known that the
error curve f - P8(f) must have at least n + 1 zeros in (0,6) so that P8(f)
is uniquely defined by interpolation of f at any such set of n + 1 points.
Choosing n + 1 such points for each 6 and applying Theorem 1 we have the
corollary. Corollary 1 generalizes Theorem 2.2 of [2] to the case of general
values of p. The proof in [2] used asymptotic properties of gram matrices
rather than the interpolation matrices of Theorem 1. Using a method similar
to that employed in [2] we also have:

THEOREM 2. Assume H n is Haar of dimension n + 1 on [0,60 1. Then

det W n *- ° if and only if the sequence {Pv(f) I converges (uniformly on
[0, 60 Dfor everyfE C[O, 60 ], Here {Pv(f)l is defined by (4) of Theorem 1.

Proof We have already seen that if det W n *- ° then Pv(f) ---t Po(f)
uniformly on [0, 60 J, where p~)(f)(O)= f(j)(O), j = 0, ... , n.

Conversely, if {Pv(f)l converges uniformly on [0,601to some Po(f) then
for each v, using Rolle's theorem there are points {$Jvl, j = 0, 1,... , n, such
that tov < $Jv < tnv ' and p~!)(f)($Jv)= fU)($Jv)' j = 0,1,..., n. Using the
uniform convergences of p~)(f) to p~)(f), j = 0,... , n, we conclude that
p~j)(f)(O)= f(j)(O), j = 0,... , n.

Thus the interpolation problem of finding P E H n such that (*) pU)(O) =
f(j)(O), j = 0,... , n, has a solution for every f E C[O, 601and by examining
the linear system coming from (*) when P is written in terms of the basis
{Uo,'''' Un I it follows immediately that det Wn *- 0. I

640(32(2-2
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TOPOLOGICAL PROPERTIES OF PO(j)

Let I ~ p ~ 00 be fixed and let f E L p [0, 150 ], where we assume H n is Haar
on [0,150 ] and det Wn "* °as before. In this section we study the set Po(j) of
best local approximations (at 0). In [2] the authors gave examples showing
that Po(j) may be empty, be uniquely defined (as we have already seen), or
contain a continuum of points. They gave conditions under which Po(j) is
convex in the case p = 2. We will now extend these results and prove the
following result.

THEOREM 3. LetfE Lp[O, 150 ] be such that Po(j) is a bounded set. Then
Po(j) is connected. Here if p = 1 or 00 we assume that f E C [0,150 ], The
analysis is based on the following lemma.

LEMMA 3. Let I/J: (0, b]-t Rm be continuous. For each sequence T =
{tv}~= 1 c (0, 15] with tv -t 0, let AT denote the set of limit points of
{(tv' I/J\(tv)'"'' I/Jm(tJ}· Let B denote the set of all such convergent sequences
and let A = UTeB AT' Assume A is bounded. Then A is a connected subset of
{(O,x" ...,xm)lxiER, i= 1,...,m}cRm+ l

•

Proof Clearly, we may assume that A has more than one element.
Suppose A is not connected. Then there exist two distinct elements, say,
(0, x I , ••• , X m) and (0, Y1"'" Ym)' that are in different connected components of
A, say, C 1 and C2 , respectively. Then there exist disjoint nonempty open sets
U and V such that A = (UnA)U (VnA) and such that C 1c U and
C 2 c V. Also, without loss of generality, we may assume U is bounded (since
A is). It follows that aUnA is empty (where as denotes the topological
boundary of the set S) since an element in this set is not in unA or V n A.
There exist sequences T= {tv! and S = {sv! such that

and

Also by going to subsequences if necessary we may assume that °< s v + 1 <
tv < Sv for all v ~ 1.

Let 15 >°be sufficiently small that Bh(x) C U and Bh(y) C V and let
;if = 15/2 (where B/(u) denotes the open ball of radius r centered at
uERm+ I

). Then there exists a vo>O such that for all v~vo'

max{ll(tv' 1/J\(tJ,... , I/Jm(tJ) -xii, II(sv' 1/J1(sJ,..., I/Jm(sJ - yll} < c. Consider
IfJ on each of the intervals Iv = [tv, sv] v ~ vo' Now I/J(IJ is connected and
hence there exists a Pv with tv <Pv < s v such that (J3 L" IfJ I (J3J,...,
IfJm(j3J) E av. That is, if this failed to occur, V and W = if would be
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disjoint nonempty open sets such that CP(IJ = (Un CP(IJ)U (WI', CPU,'))
(since R m+ 1= UU auu (uy and all three sets are disjoint). Thus CP(IJ
would not be connected-a contradiction. But au is compact since U is
bounded. Hence the sequence (fl", CPl(flJ,..., CPn(flJ) has a cluster point in
au which must be of the form (0, Wl"'" wm). Thus aUnA is nonempty-a
contradiction. Thus A is connected. I

COROLLARY 2. Suppose that the hypotheses of Lemma 3 hold and in
addition suppose that CPi E erO, 15] for i = 1,... , m, i =1= io. Then A is convex.

Proof Every element of A is of the form (0, CPI(O),..., CPio-I(O), x,
CPio+I(O),... , CPm(O)). Then A is a connected subset of {CO, CPI(O), ... , CPio-I(O),
v, CPio+1(0),... , CPm(O)) I v E R} and hence must be an "interval" and thus is
convex. I

Proof of Theorem 3. Assume Po(f) is bounded. For each °< 15 < 150 the
element P~(f) E H n that is the best approximation to f from H n' in the L p

sense, is a continuous function of 15. Thus P~(f) may be written in the form
Pcp(f) = L:7=0 aM) Ui' where each ai(t5) is continuous on (O,t5oJ. Since the
correspondence L:7=0 ai Ui ---+ (0, ao,'''' an) is a homeomorphism, the cluster
points of {P~(f)} form a connected set if and only if the set of all cluster
points of sequences of the form {8v ' (a o(8J, ... , an (8J)} as 8v ---+ 0+ form a
connected set in R n + 2. But by Lemma 3, this set is connected, so Po(f) is
connected. I

Theorem 3 and Corollary 2 immediately yield the following result, which
generalizes a similar result in [2J.

COROLLARY 3. LetfE [0, t50 J be such thatfE en-I[O, t5oJ. Then the set
Po(f) is either empty or convex.

Remark. Corollary 3 holds tBven if Po(f) is unbounded since it is easy to
see that Corollary 2 is valid even if the set A is unbounded.

CONCLUDING REMARKS

The question of whether or not Po(f) is always convex is still open, even
in the cases p = 2 and p = 00. Also we conjecture that Po(f) is connected
even if it is unbounded (if indeed that can happen) though this would not
necessarily be true for the general types of functions considered in Lemma 3.
Finally, the results in [2 J concerning Pade approximation and quasi-rational
approximation extend directly to the general setting of this paper and
extensions to truly nonlinear families should be possible. This might be
useful in studying nonlinear spline families [3 J.
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